
Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Porting SPaSM to Roadrunner

Roadrunner Technical Seminar Series
April 10, 2008

Sriram Swaminarayan
CCS-2 Roadrunner Applications Team

LA-UR-08-4673

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 2 -

Acknowledgements

Folks that have wandered with me on
this journey:

Tim Germann
Kai Kadau

Al McPherson
Nehal Desai

Special Thanks to Cornell Wright

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 3 -

Outline of This Talk

I: An Evolutionary Approach:
Morphing SPaSM onto Roadrunner
for the Assessment

– Some SPU optimizations
– Mistakes we made
– Lessons we learned

II: A Revolutionary Approach
– Ripping SPaSM Apart
– Results for Lennard-Jones Potential

III: Odds and Ends

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 4 -

SPaSM is a Parallel, Scalable and Flexible MD Code

Scalable Parallel Short-range Molecular-dynamics

• Shown to scale linearly to 212k CPUs on BG/L
– Modeling of SPaSM by the PAL team shows this

trend applies to Roadrunner as well
• Solves Newton’s laws at the atomic level
• Aimed primarily at metals
• Modular

– libSPaSM:
Geometry, Communications,
Visualization, and Iterators

– libUser:
Particle structure, Force Routines,
Time-stepper, and Problem Specific Analysis

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 5 -

Part I: An Evolutionary Approach

Question:
Can we get acceleration with an
evolutionary approach?

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 6 -

Decision to Implement force() on CBE

CPU

Read XYZ

Force

Update XYZ

xyz

forces

SPaSM Control/Data Flow • 95% of time in force()

• Function offload model

• Opterons for positions

• CBE for force()

• No Problem!

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 7 -

• Stand-alone on CBE
• First version of CellMD handles EAM (Embedded

Atom Method) potential

– ‘Realistic’ many Body potential
– Uses tables for interpolation
– Based on Density Functional Theory
– Neighbor finding is the key to efficient implementation

• Correct before fast

Esys =
1
2

CellMD: the CBE version concentrates on EAM

φ rik()
k≠ i
∑

i
∑ + F ρ i()

i
∑ where ρ i = ρ rik()

k≠ i
∑

Fij =
∂Esys

∂rij

=
∂φij

∂rij

 + ∂ρ
∂rij

∂F
∂ρ ρ i

+ ∂F
∂ρ ρ j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= T1 + T2 T3
i + T3

j()

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 8 -

Spatial Decomposition Key to Efficient Neighbor List
Typical Code:
for each box in system

load particles for box
load particles for neighbor boxes

Interact all particles in Box with all particles
in all neighboring boxes

end

~ 20 atoms in each box
⇒ each atom interacts with 540 other atoms
⇒ However, only ~70 atoms lie within cutoff
⇒ Lots of wasted work
⇒ We need a means of rejecting atoms

efficiently even within this reduced set

rcut

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 9 -

Optimizing the Neighbor Listing

Naive Method:
reject based on rij

for atoms iin current box {

for atoms jin nbr boxes {
compute rij
if (rij< rcut) {

interact atoms i& j

}

}

}

Works OK on standard CPUs
Really sucks on the SPU

Method Naive Simple Mutant
% time in NL 80% 60% 25%

Simple NL:
Create a neighbor list first using rij

for atoms iin current box {
for atoms jin nbr boxes {

compute rij
if (rij< rcut) {

add atom j to NL
increment NL count

}
}
{ Process Neighbor List i }

}

Works very well on standard CPUs
OK on the SPU

Mutant SPU Version:
No ‘if’ statements

for atoms iin current box {

for atoms jin nbr boxes {
compute rij
Mask = (rij> rcut)
Assign jto current NL position
Increment NL pointer by (Mask & 1)

}

{ Process Neighbor List i }
}

N/A on standard CPUs
Great on the SPU!

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 10 -

SPU Code For Mutant Neighbor Listing
#define ZEROS ((vec_int4) {0,0,0,0})
#define ONES ((vec_int4) {1,1,1,1})

n = 0;
NL_Position = ZEROS;
for(j=0; j<numNbrAtoms; j++) {

Δx = spu_sub(v_Ax[0],v_Bx[j]);
Δy = spu_sub(v_Ay[0],v_By[j]);
Δz = spu_sub(v_Az[0],v_Bz[j]);

tmp1 = spu_mul(Δx, Δx);
tmp2 = spu_madd(Δy,Δy,tmp1);
r_sqr= spu_madd(Δz,Δz,tmp2);

mask = spu_cmpgt(r_sqr,rcut);
mask_r = spu_slqwbyte(mask,8);
incr = spu_and(ONES,spu_or(mask,mask_r));

NL_Δx[n] = Δx;
NL_Δy[n] = Δy;
NL_Δz[n] = Δz;
NL_r2[n] = r_sqr;
NL_Mask[n] = mask;

NL_Position = spu_add(NL_Position,incr);
n = si_to_int(NL_Position);

}

Mutant SPU Version:
Create a neighbor list first using rij
No ‘if’ statements

for atoms iin current box {

for atoms jin nbr boxes {
compute rij
Mask = (rij> rcut)
Assign jto current NL position
Increment NL pointer by (Mask & 1)

}

{ Process Neighbor List i }
}

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 11 -

CellMD: Summary of Salient Features

• 3.5 × faster than SPaSM Opteron version
• ~ 6 Gflop/s double precision
• Forces computed using EAM potential
• Optimized Vector code
• Mutant neighbor listing
• Implements full neighbor list

⇒ Double the work of the CPU Version

Ready to be merged with serial SPaSM code

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 12 -

Problem: CPU Data Layout Not Optimal for CBE

• SPaSM uses an Array of Structures (AOS) data layout:
x0y0 z0fx0 fy0 fz0 x1y1 z1fx1 fy1 fz1…

• CBE most effective with a Structure of Arrays (SOA) data layout:
x0x1 x2…xN y0y1 y2…yN……

• Also Endianness is different!
• Solution: Use PPU to translate Endian, and (AOS) to (SOA)

CBE

Position Convert:
Endian &

AOS SOA

Position Convert:
Endian &

AOS SOA
SPU: ComputeSPU: Compute

Force Convert:
SOA AOS &

Endian

Force Convert:
SOA AOS &

Endian

Opteron

Transfer Core
to CBE

Transfer Core
to CBE

Opteron

Receive Forces &
Update Positions

Receive Forces &
Update Positions

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 13 -

Mistake: The PPU is a Piece of Scrap

CBE

Position Convert: Endian
& AOS SOA

Position Convert: Endian
& AOS SOA

SPU: Compute
t = 3.8s

SPU: Compute
t = 3.8s

Force Convert:
SOA AOS & Endian

Force Convert:
SOA AOS & Endian

Opteron

Transfer Core to
CBE

Transfer Core to
CBE

Opteron

Receive Forces & Update
Positions

Receive Forces & Update
Positions

Worst: PPU does all conversions: t = 7.26, (tovrhd= 3.31)

Not so bad: Opteron & PPU share Responsibility: t = 5.16, (tovrhd= 1.23)

CBE

AOS SOAAOS SOA SPU: Compute
t = 3.8s

SPU: Compute
t = 3.8s

SOA AOSSOA AOS

Opteron

EC Position &
Transfer to CBE
EC Position &

Transfer to CBE

Opteron

Receive Forces & Update
Positions

Receive Forces & Update
Positions

Best: Ignore PPU, Opteron & SPU share Responsibility: t = 4.3, (tovrhd= 0.5)

CBE

PPU: pass-thruPPU: pass-thru SPU: Compute (3.8s),
EC forces (0.01s)

SPU: Compute (3.8s),
EC forces (0.01s)

PPU: pass-thruPPU: pass-thru

Opteron

EC Position,
AOS SOA
EC Position,
AOS SOA

Opteron

SOA AOS,
& Update Positions

SOA AOS,
& Update Positions

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 14 -

Force Function Successfully Offloaded to CBE

CBE (PPU pass-thru)

For each atom pair ij
Compute Flocal

For each atom pair
compute Force from
local data

Force = f(Flocal)

Flocal, domains

CPU
Read XYZ

Update XYZ

xyz

forces

Translate SPaSM xyz data
to domain data structure

Force

Translate forces from CBE
into SPaSM data structure

domains

forces

DaCS

OK, Onward to Parallel!

2.5 × faster than Original Opteron Version

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 15 -

Problem: communications need to be redesigned

• SPaSM uses lock-step model
• Up to 50,000 messages per processor per timestep!
• Reduces memory requirements but …
• Kills performance in hybrid mode

Solution: Use a ‘skin’ based model: drops to 6 messages

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 16 -

Parallel Hybrid Force Offload Works!

CBE (PPU pass-thru)

For each atom pair ij
Compute Flocal, Foff-node

For each atom pair
compute Force from
local and off-node data

Force = f(Flocal , Foff-node)

Flocal, domains

CPU
Read XYZ

Update XYZ

xyz

forces

(skin) Gather / Scatter
off-node data

Gather skin
Translate SPaSM xyz data
to domain data structure

Force

Translate forces from CBE
into SPaSM data structure

domains

Foff-node

Foff-node

forces

DaCS

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 17 -

SPaSM-Parallel-Hybrid scales well on AAIS

• ~ 2× (3× on eDP) faster than SPaSM on Opterons
– This is in spite of doing double the work

• 8 Gflop/s per Cell (100TF on Roadrunner)
• Opterons handle positions and MPI
• SPUs handle forces
• PPE does minimal memory management

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 18 -

Lessons Learned

• An evolutionary approach can work
• Use the SPUs and Opterons, avoid PPU.

Remember: PPU = Poorly Performing Unit
• Memory layout and data flow is everything
• Endian conversion takes no time at all
• SIMD Vectorization is a must:

– vector code is ~ 4 x faster than serial code
• ‘if’ statements on the SPU are a bad thing

– Often doing the work twice and masking is better than
using an ‘if’ or ‘switch’ statement

• Unroll loops manually since compilers are not there yet
• Did I mention the PPU sucks?

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 19 -

Success: Evolutionary Approaches Can Work

Question:
Can we get acceleration with an
evolutionary approach?

Answer
Yes but you spend 20% of time
translating data!

Lots of dead time on the compute units

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 20 -

Part II: A Revolutionary Approach

Question:
Can we get much better acceleration by
ripping SPaSM apart and rebuilding it starting
from the CBE and working our way
backwards, and is it worth it?

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 21 -

Timing Analysis of Part I Shows Dead Time

Opterons compute positions, then sit idle as the
SPUs compute forces, and vice-versa

Esys =
1
2

φ rik()
k≠ i
∑

i
∑ + F ρ i()

i
∑ where ρ i = ρ rik()

k≠ i
∑

Fij =
∂Esys

∂rij

=
∂φij

∂rij

 + ∂ρ
∂rij

∂F
∂ρ ρ i

+ ∂F
∂ρ ρ j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= T1 + T2 T3
i + T3

j()

Self = interact within one box
List = interact between boxes

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 22 -

New Structure: SPU is King, Communications Hidden

Opterons handle communications with other nodes.
SPUs do everything else

Esys =
1
2

φ rik()
k≠ i
∑

i
∑ + F ρ i()

i
∑ where ρ i = ρ rik()

k≠ i
∑

Fij =
∂Esys

∂rij

=
∂φij

∂rij

 + ∂ρ
∂rij

∂F
∂ρ ρ i

+ ∂F
∂ρ ρ j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= T1 + T2 T3
i + T3

j()

Self = interact within one box
List = interact between boxes

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 23 -

Simplified flow for Lennard-Jones Potential

SPU:
– Own all Compute intensive parts
– Very little dead time

Opteron:
– Own all Off-node communication
– Lots of dead time - used for analysis

Added benefits:
– Simpler potential
– More opportunities to optimize

SPU code

Self = interact within one box
List = interact between boxes

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 24 -

Serial Results Show Promising Performance

SPU:
– Computes forces

Opteron:
– Integrate time
– Distribute particles

Preliminary Results:
– ~ 6× faster than SPaSM

on the base Opterons
– Kernel runs at 45% of peak
– 28 Gflop/s overall performance
– Projected 300 TF on Roadrunner in

double precision!

Self = interact within one box
List = interact between boxes

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 25 -

Thoughts on DaCS

• For the most part, DaCS just works
• Use dacs_put() and dacs_get() if you can
• If you are transitioning from MPI, you will fight the

good fight with DaCS
– dacs_send() and dacs_recv() have limitation on tags
– No equivalent of MPI_IProbe()
– dacs_recv() will not report message size or the tag of the

received message
– Need to know a-priori the sizes and order of messages

• New words in the English Language:
Dacsify, Dacsificate: To convert a code to DaCs
Dacs-phyxiate: How you feel when doing said conversion
Dacs-ygen: What your code needs to live.

Lack of dacsygen cause dacs-phyxiation

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 26 -

Part II: Philosophical Question

Is it still SPaSM if you rip its guts out and
rebuild it from the ground up?

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 27 -

Part III: Odds & Ends

• Using Roadrunner efficiently is hard
• We’ve developed some tools to make

Roadrunner more ‘usable’ for us
• The community is welcome to them
• They come with absolutely no support

whatsoever
• Nor do they come with any warranty
• Documentation?

– Hah! I laugh in the face of documentation

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 28 -

SAL: SIMD Abstraction Layer

Makes SIMD instructions universal across
SPU, SSE, and AltiVec
Authors: Ben Bergen & Tim Kelley

What it provides:
– Single API for vectorization
– Commands expand to corresponding

platform’s underlying SIMD vector units

What it doesn’t provide:
– DMA engine
– Automatic vectorization

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 29 -

CIK: Cell Isolation Kit

Allows for debugging of data flow within SPU code on
Opteron or PPU
Author: Sriram Swaminarayan

What it provides:
– Fake DMA Engine
– SIMD abstraction (will soon switch to SAL)
– Same source compiles and runs on the

Opterons, PPU, and SPUs

What it doesn’t provide:
– Automatic vectorization

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 30 -

Mutant Neighbor Listing with CIK
#define ZEROS ((vec_int4) {0,0,0,0})
#define ONES ((vec_int4) {1,1,1,1})

n = 0;
NL_Position = ZEROS;
for(j=0; j<numNbrAtoms; j++) {

Δx = spu_sub(v_Ax[0],v_Bx[j]);
Δy = spu_sub(v_Ay[0],v_By[j]);
Δz = spu_sub(v_Az[0],v_Bz[j]);

tmp1 = spu_mul(Δx, Δx);
tmp2 = spu_madd(Δy,Δy,tmp1);
r_sqr= spu_madd(Δz,Δz,tmp2);

mask = spu_cmpgt(r_sqr,rcut);
mask_r = spu_rlqwbyte(mask,8);
incr = spu_and(ONES,spu_or(mask,mask_r));

NL_Δx[n] = Δx;
NL_Δy[n] = Δy;
NL_Δz[n] = Δz;
NL_r2[n] = r_sqr;
NL_Mask[n] = mask;

NL_Position = spu_add(NL_Position,incr);
n = si_to_int(NL_Position);

}

#define ZEROS ((cik32i_t) {0,0,0,0})
#define ONES ((cik32i_t) {1,1,1,1})

n = 0;
NL_Position = ZEROS;
for(j=0; j<numNbrAtoms; j++) {

Δx = cikSub32fp(v_Ax[0],v_Bx[j]);
Δy = cikSub32fp(v_Ay[0],v_By[j]);
Δz = cikSub32fp(v_Az[0],v_Bz[j]);

tmp1 = cikMul32fp(Δx, Δx);
tmp2 = cikMAdd32fp(Δy,Δy,tmp1);
r_sqr= cikMAdd32fp(Δz,Δz,tmp2);

mask = cikCmpgt32fp(r_sqr,rcut);
mask_r = cikRotate32(mask,8);
incr = cikAnd32i(ONES,cikOr32i(mask,mask_r));

NL_Δx[n] = Δx;
NL_Δy[n] = Δy;
NL_Δz[n] = Δz;
NL_r2[n] = r_sqr;
NL_Mask[n] = mask;

NL_Position = cikAdd32i(NL_Position,incr);
n = cikToInt32i(NL_Position);

}

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 31 -

Loop Unroller

Unrolls loops based on user input
Author: Sriram Swaminarayan

What it provides:
– Automation of loop unrolling to any depth
– Additive collation of unrolled variables at the end

What it doesn’t provide:
Code analysis to see if what you asked it to unroll actually can
be unrolled ‘safely’. Essentially YAFIYGI.

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 32 -

Importance of Loop Unrolling

For the simple code:
vec_double2 a[8000];

vec_double2 e_res

init(a);

e_res = {0.0,0.0};

// e_res = sum(a[i]̂ 2)

for(inti=0; i<8000; i++) {

e_res = spu_madd(a[i],a[i],e_res);

}

Unroll Depth xlc gcc

0 11.4 GF 10.9 GF

2 22.4 GF 21.2 GF

4 44.7 GF 31.4 GF

8 48.2 GF 30.3 GF

16 87.1 GF 49.1 GF

/*-------------- Unrolled by 16 ------------------------*/
res0 = res1 = res2 = res3 = spu_splats((double)0.0);
res4 = res5 = res6 = res7 = spu_splats((double)0.0);
res8 = res9 = res10 = res11 = spu_splats((double)0.0);
res12 = res13 = res14 = res15 = spu_splats((double)0.0);

for(i=0; i<NMAX; i+=16) {
res0 = spu_madd(a[i],a[i],res0);
res1 = spu_madd(a[i+1],a[I+1],res1);
res2 = spu_madd(a[i+2],a[i+2],res2);
res3 = spu_madd(a[i+3],a[i+3],res3);
res4 = spu_madd(a[i+4],a[i+4],res4);
res5 = spu_madd(a[i+5],a[i+5],res5);
res6 = spu_madd(a[i+6],a[i+6],res6);
res7 = spu_madd(a[i+7],a[i+7],res7);
res8 = spu_madd(a[i+8],a[i+8],res8);
res9 = spu_madd(a[i+9],a[i+9],res9);
res10 = spu_madd(a[i+10],a[i+10],res10);
res11 = spu_madd(a[i+11],a[i+11],res11);
res12 = spu_madd(a[i+12],a[i+12],res12);
res13 = spu_madd(a[i+13],a[i+13],res13);
res14 = spu_madd(a[i+14],a[i+14],res14);
res15 = spu_madd(a[i+15],a[i+15],res15);

}
res8 = spu_add(res8,res9);
res10 = spu_add(res10,res11);
res12 = spu_add(res12,res13);
res14 = spu_add(res14,res15);
res9 = spu_add(res8,res10);
res11 = spu_add(res12,res14);
res8 = spu_add(res11,res9);
res0 = spu_add(res0,res1);
res2 = spu_add(res2,res3);
res4 = spu_add(res4,res5);
res6 = spu_add(res6,res7);
res1 = spu_add(res0,res2);
res3 = spu_add(res4,res6);
res5 = spu_add(res3,res1);
e_res = spu_add(res5,res8);

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Sriram Swaminarayan, LANL 4/10/2008
- 33 -

Parts I, II, & III: Deep Thoughts

Before You Begin Programming Roadrunner:
Analyze your application’s performance

– Profile your code to find hot spots
– Vectorization is essential to performance:

Analyze hot spots to see if they can be vectorized
– Data layout / data flow is everything:

• If you cannot vectorize without modifying
your data, you are already dead

• Consider a revolutionary approach
– Overlap compute and communications
– Manually unroll all possible loops
– Avoid ‘if’s if you can
– PAL team can help you do projections to large scales

based on your communication patterns
– Keep the SPUs busy!

	Porting SPaSM to Roadrunner
	Acknowledgements
	Outline of This Talk
	SPaSM is a Parallel, Scalable and Flexible MD Code
	Part I: An Evolutionary Approach
	Decision to Implement force() on CBE
	CellMD: the CBE version concentrates on EAM
	Spatial Decomposition Key to Efficient Neighbor List
	Optimizing the Neighbor Listing
	SPU Code For Mutant Neighbor Listing
	CellMD: Summary of Salient Features
	Problem: CPU Data Layout Not Optimal for CBE
	Mistake: The PPU is a Piece of Scrap
	Force Function Successfully Offloaded to CBE
	Problem: communications need to be redesigned
	Parallel Hybrid Force Offload Works!
	SPaSM-Parallel-Hybrid scales well on AAIS
	Lessons Learned
	Success: Evolutionary Approaches Can Work
	Part II: A Revolutionary Approach
	Timing Analysis of Part I Shows Dead Time
	New Structure: SPU is King, Communications Hidden
	Simplified flow for Lennard-Jones Potential
	Serial Results Show Promising Performance
	Thoughts on DaCS
	Part II: Philosophical Question
	Part III: Odds & Ends
	SAL: SIMD Abstraction Layer
	CIK: Cell Isolation Kit
	Mutant Neighbor Listing with CIK
	Loop Unroller
	Importance of Loop Unrolling
	Parts I, II, & III: Deep Thoughts

